Sunday, March 20, 2022

The Grand Pitch Formation

Back in October I posted on a formation I saw in Maine, the Matagamon Sandstone. While going through my photos, I realized I had a number of scenic and interesting shots of another formation, also not widely known: the Grand Pitch Formation.

Comes with waterfalls!

The Grand Pitch Formation goes back in the literature to the 1930s, when it was known as the Grand Falls Formation (Ruedemann and Smith 1935). This name, though, was already in use, so the more specific Grand Pitch name was substituted (Neuman 1962). The name refers to the Grand Pitch, a waterfall on the East Branch of the Penobscot supported by more resistant beds of the formation.

Resistant beds like these.

If you've taken a historical geology class in North America, you've probably spent some time with the assembly of eastern North America. Back when I was taking that class, it was a three-stage process marked by the Taconic, Acadian, and Alleghanian (or Appalachian) mountain-building events (orogenies). Well, as you might guess, it's a bit more complicated than that. (Just a bit.) In actual practice, the North American craton, microplates, continental fragments, island arcs, and all and sundry were bumping and jostling and colliding with each other all the time. In the present example, the Grand Pitch Formation was deposited not in North America, but on a Gondwanan terrane known as Ganderia (or Gander) that eventually piled up on the continent after a series of its own adventures (including running into another terrane) (Neuman and Max 1989).

Just like our slice of the Equator in Minnesota, here in Maine you can stand on a former sliver of the tropics.

The Grand Pitch Formation is a heterogeneous unit, including beds of gray, green, and red siltstone and slate, quartzite, and minor amounts of graywacke and tuff (Neuman 1967). Siltstone and slate are charming lithologies but are not noted for resistance to weathering; instead, the falls are supported by quartzite beds. The depositional environment has been interpreted as a continental slope-rise setting (Wellensiek et al. 1990).

Finer-grained beds as seen at the surface: not recommended for load-bearing outcrops.

It's a pretty thick formation, encompassing at least 1,500 m (5,000 ft) (Neuman 1967), but it's not in mint condition, to say the least. The formation has undergone several episodes of deformation, going back to the Ganderia days with a Cambrian–Ordovician event termed the Penobscot Orogeny or Disturbance (Neuman and Max 1989).

Red and gray beds make it easy to see minor faulting here.

The age of the Grand Pitch Formation is not entirely clear. Only one kind of fossil has ever been reported from it, the invertebrate trace fossil Oldhamia, which looks kind of like a fireworks burst or a palm frond and is thought to have been produced by something "mining" beneath microbial mats (Seilacher et al. 2005). Oldhamia was most abundant in the early Cambrian, but is not limited to that time frame, nor does its occasional presence mean the entire Grand Pitch Formation has to be that age, either (Neuman 1962, 1967). Generally the formation is attributed to some interval of the Cambrian.

Going back to deformations and alterations, here we have a patch of the formation scored with glacial striations.

References

Neuman, R. B. 1962. The Grand Pitch Formation: new name for the Grand Falls Formation (Cambrian?) in northeastern Maine. American Journal of Science, series 5, 260:794–797.

Neuman, R. B. 1967. Bedrock geology of the Shin Pond and Stacyville quadrangles, Penobscot County, Maine. U.S. Geological Survey, Washington, D.C. Professional Paper 524-I.

Neuman, R. B., and M. D. Max. 1989. Penobscottian-Grampian-Finnmarkian orogenies as indicators of terrane linkages. Pages 31–45 in R. D. Dallmeyer, editor. Terranes in the circum-Atlantic Paleozoic orogens. Geological Society of America, Boulder, Colorado. Special Paper 230.

Ruedemann, R., and E. S. C. Smith. 1935. The Ordovician in Maine. American Journal of Science, series 5, 30:353–355.

Seilacher, A., L. A. Buatois, and M. G. Mángano. 2005. Trace fossils in the Ediacaran–Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography Palaeoclimatology Palaeoecology 227(4):323–356.

Wellensiek, M. R., B. A. van der Phijm, R. Van der Voo, and R. J. E. Johnson. 1990. Tectonic history of the Lunksoos composite terrane in the Maine Appalachians. Tectonics 9(4):719–734.

No comments:

Post a Comment